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Abstract

Image classification of nanoparticles from scanning electron microscopes for nuclear forensic 

analysis is a long, time consuming process. Months of analyst time may initially be required to sift 

through images in order to categorize morphological characteristics associated with nanoparticle 

identification. Subsequent assessment of newly acquired images against identified characteristics 

can be equally time consuming. We present INStINCt, our Intelligent Signature Canvas, as a 

framework for quickly organizing image data in a web-based canvas framework that partitions 

images based on features derived from convolutional neural networks. This work is demonstrated 

using particle images from an aerosol study conducted by Pacific Northwest National Laboratory 

under the auspices of the U.S. Army Public Health Command to determine depleted uranium 

aerosol doses and risks.

I. Introduction

Forensic analysis of nanoparticles is often conducted through the collection and 

identification of electron microscopy images to determine the origin of suspected nuclear 

material. Each image is carefully studied by experts for classification of materials based on 

texture, shape, and size. Manually inspecting large image datasets takes enormous amounts 

of time. However, automatic classification of large image datasets is a challenging problem 

due to the complexity involved in choosing image features, the lack of training data available 

for effective machine learning methods, and the availability of user interfaces to parse 

through images. Therefore, a significant need exists for automated and semi-automated 

methods to help analysts perform accurate image classification in large image datasets. We 

present INStINCt, our Intelligent Signature Canvas, as a method for quickly organizing 

image data in a web-based canvas framework. Images are partitioned using small sets of 
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example images, chosen by users, and presented in an optimal layout based on features 

derived from convolutional neural networks.

We demonstrate the nuclear forensic applicability of this work using particle images from 

the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment 

Program [1], which a team lead by Pacific Northwest National Laboratory conducted under 

the auspices of the U.S. Army Public Health Command. This dataset consists of a large set 

of backscattered electron (BSE) images from scanning electron microscopy (SEM) of 

aerosol samples collected during perforation of an Abrams tank and a Bradley vehicle with 

DU munitions. The details of aerosol collection in the high-energy environment of the 

Capstone study have been described by Holmes et al. [2]. The motivation for examining the 

images of the particles is to determine the particle morphology, especially in the nano-size 

range. This morphology provides insight into the relationship between the chemical 

formation, the solubility, and the dissolution rates [1] present during their formation. As 

reported by Krupka et al. [3], ultrafine aerosols of aluminum and iron from the vehicle 

armor were observed in the analysis of the Capstone particle images. The mechanism of 

formation for such particles in the nano-size range from high temperature processes involves 

vaporization-condensation mechanisms. Guilmette and Parkhurst further reported that little 

to no evidence was obtained that demonstrated the existence of DU nanoparticles [4]. 

Examples of BSE images of a selection of the particles from the Capstone study can be seen 

in Figure 1.

II. Methods

Our INStINCt framework was developed to enable efficient organization of SEM images 

through the integration of a web-based interface, state-of-the-art image feature vectors, and a 

new clustering technique. The user interacts with the INStINCt interface through a light 

weight web client application that provides a virtual canvas for organizing images and 

enabling different users to collaborate on the same datasets. The canvas displays images 

represented by a 4096-dimensional feature vector computed from OverFeat, a convolutional 

neural network[5]. Since we cannot easily visualize these high dimensional feature vectors, 

we attempt to map these feature vectors into a 2-dimensional space while preserving their 

class relations. The method we implemented to perform dimensionality reduction is an 

adaptive spatialization method. First, the user-selected images are clustered using DBSCAN 

[6] and “anchors” for each group are computed. The positions of the remaining images are 

updated in the 2-dimensional spatialization using a coordinates determined by the similarity 

of the images to these clusters. Similarity is measured by the angle between a feature vector 

and the low-dimensional subspace created from the anchor. The relationships between 

unlabeled images and small, user-selected clusters of images are visualized via diffusion 

map in the canvas. One of the advantages of our method for representing the clusters is that 

in the inevitable case that the visualization does not represent all of the semantic information 

recognized by the domain expert, the visualization can be globally updated by moving a 

small number of samples closer to or further from the clusters.
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A. Client Interface

Central to our implementation is our web-based software for displaying images and 

recording human operator interactions. We leverage our activeCanvas web application to 

display the computed visualizations. The activeCanvas allows image files to be uploaded to a 

server, from which they can be organized into a 2D layout by means of JSON files that 

contain most relevantly, file names, (x, y)-coordinates, and a Boolean flag that indicates 

whether or not an image was moved on the canvas. The activeCanvas includes the ability to 

zoom and pan across the canvas as well as an image magnifier that allows users to see an 

enlarged version of the currently selected image. It also includes the ability to select multiple 

images as a group to quickly arrange images on screen as the user desires according to the 

task at hand.

Via a REST-ful interface, the user sends the JSON file, containing new (x, y)-coordinates 

and updated “moved” Boolean flags for each image, to the server. The server analyzes only 

the images the user moved, and, according to the methods outlined in Section II-C, 

computes a new location for all images on the screen. The updated (x, y)-coordinates are 

placed into the JSON, and that information is pushed back to the web-interface. Images on 

the screen smoothly translate to the new positions calculated by the server. The full 

translation takes about 1.5 seconds, providing the user with a visual trace of the changes. 

The user then adjusts additional images according to their tasks, based on the new positions, 

to provide additional input to the prediction algorithm. The cycle repeats until the user is 

satisfied with all the positions of the images on the screen, and then the user may export the 

JSON to another application for further analysis, such as building a classifier. Additionally, 

users can upload supplementary images as part of the main workflow, adding additional data 

to the layout if needed.

B. Feature Selection

Feature selection for computer vision is a challenging problem. There are many methods for 

finding relevant features in images and creating feature vectors to represent each image. 

Some of the most relevant work in this area focuses on keypoint detection and aggregation 

of similar keypoints to identify similarities across images [7]. Instead of trying to find the 

best keypoint detector for our data, we chose to represent each image with a 4096-

dimensional feature vector that is computed as the output of Sermanet et al. ’s convolutional 

neural network called OverFeat [5]. OverFeat was exhaustively trained to identify object 

boundaries on a massive corpus of real-life images from the ImageNet Large Scale Visual 

Recognition Challenge [8]. This training allows it to effectively extract feature vectors that 

would allow nearly linear separation between the object classes in the 4096-dimensional 

space. It turns out it also acts as a very good general feature descriptor for image data [9]. 

We found that when we performed a qualitative evaluation of the OverFeat features against 

standard image descriptors, the OverFeat features provided better separation of different 

particle images.

C. Dimensionality Reduction

As a result of the mapping from the original pixel space of the images to the feature space 

via the convolutional neural network, the SEM data should be close to linearly separable in 
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ℝ4096. However visualization in 4096 dimensions is not feasible, so we attempt to preserve 

class relations in a reduced dimension visualization. Most low dimensional mappings look to 

preserve pairwise relationships between all data points either locally or globally under the 

assumption that little is known about the data itself. Conversely, our application domain is 

centered around a human operator who has working knowledge of the data, and some 

relevant relationships. The operator’s goal is to explore other hypothetical relationships in 

the data or to quickly organize the images with respect to the known, relevant information 

rather than to all possible information.

With this task in mind, we look to display points based on their relationship to user selected 

clusters of data. Starting from a naive 2-dimensional layout of the image data, a user 

specifies a few small collections of related images by moving them into separate, spatially 

contained regions of the visualization. The initial layout presented to the user could be as 

simple as a tessellation of the images or randomly generated (x, y)-coordinates. We would 

like to illustrate the improvements that our adaptive method for visual sort and summary 

provides over existing techniques, so we generate our initial layout using the well-known 

nonlinear embedding diffusion map technique [10].

The diffusion map layout is created by constructing a Gaussian kernel from the distances 

between data points; a technique that works equally well in Euclidean space or on a 

manifold equipped with a metric. Distances for this kernel will be measured using the 

minimum principal angle between two subspaces. As described by Björck and Golub, 

principal angles can be computed for subspaces of different dimensions, and specific to our 

application it will work for measuring the angle between one feature vector and a subspace 

generated from the span of a collection of feature vectors [11].

This Gaussian kernel is used to compute a normalized graph Laplacian, and each row of the 

Laplacian is rescaled to unit length so as to find the 1-step transition probabilities. The 

eigenvectors corresponding to the largest magnitude eigenvalues of this matrix then 

represent the coordinates of the low dimensional embedding, with the exception that the first 

eigenvector is constant and is thus dismissed. Figure 2 shows the initial layout of the 

Capstone particle images using a standard 1-step diffusion map.

The dimensionality reduction performed in the INStINCt framework is cued by user-created 

clusters. Thus our description here will follow this process. As a simple example, suppose a 

user manually creates two small clusters of related images by moving them into distinct, 

spatially constrained areas of the activeCanvas as is shown by the circled images in Figure 3. 

The interaction with the activeCanvas is recorded using a JSON file that indicates the new 

(x, y)-coordinates of the moved images as well as the Boolean flag showing that they have 

been touched. This file can be exported from the activeCanvas if further analysis and 

computations are desired.

Because of an intentional limitation in our architecture, we are not allowed knowledge of the 

previous locations of the images. Thus we cannot determine the user’s intentions strictly 

based on an image’s updated coordinates. For example, we would not know that two images 

have been moved closer together from the information in the JSON file. We would only 
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know that both images were moved and their current coordinates. Instead, we interpret the 

human operators actions by clustering the images that have been moved based on their 2-

dimensional coordinates. For this task we employ the Density-based spatial clustering of 

applications with noise (DBSCAN) algorithm of Ester et al. [6]. The DBSCAN method 

looks for areas of high density in the data to create clusters. DBSCAN was chosen because it 

does not require knowledge about the number of clusters ahead of time, it can find clusters 

of arbitrary shape, and it allows for some points to remain unclustered if they are not located 

in dense regions. The final point is advantageous because sometimes the user wishes to 

inject class information by pushing dissimilar images further apart, rather than by grouping 

similar images. Thus the INStINCt framework does not require that an image’s movement 

away from a cluster necessarily forces that image into another cluster. One additional note, 

the DBSCAN method assumes that clusters are of relatively equal size, so skewed group 

sizes generated by a user may yield less desirable results. However, since we assume that the 

human operator has only moved a small number of points, this should not be an issue.

The DBSCAN clustering step determines which images a user thinks are similar. The 

inferred knowledge from the clusters is then used to create a subspace “anchor” as a 

representative for each similarity group. An anchor consists of a subspace average of the 

feature vectors for the images in that cluster. We impose the constraint that the space 

spanned by each anchor must not overlap with the anchors for any of the other clusters. 

Additionally, moved images that were not assigned to a cluster are represented in the anchor 

of the nearest cluster with a reduced weight proportional to their distance from that group.

For instance, assume that a human operator moved some images into two dense clusters, and 

moved a few other images into a non-clustered region away from those sets. The anchors, 

UA and UB, for clusters A and B are computed as follows. Let

ai i = 1
N and b j j = 1

M
(1)

be the collections feature vectors associated with the images in cluster A and cluster B 
respectively, such that ai, bj ℝ4096 for all i, j. Let

xk k ∈ K
(2)

be the feature vectors from images that were not placed in a cluster by DBSCAN, and

xa a ∈ K
(3)

be the subset of those points that are closer in 2-dimensional Euclidean distance to cluster A 

than to cluster B. For all the vectors in ai i = 1
N  and {xa}a∈K, project away from the span of 

vectors in cluster B. That is,
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a∼i = I − PPT ai (4)

where P is an orthonormal basis for the span of {b1, b2, …, bM}.

Associate a weight of λi = 1 with each element of a∼i i = 1
N  and

λa = 1
min xa − ai 2

for i = 1…N
(5)

with each element of x∼a a ∈ K
. The anchor UA is then computed as the weighted flag mean 

of this input data using the method described by Draper et al. [12]. The anchor UB is 

computed for cluster B in an analogous fashion.

Using the subspace anchors that represent each of the spatial clusters, we now compute the 

principal angle between each feature vector in the data set and each of the anchors. Let s be 

the number of points in the data set and let r be the number of clusters that the human 

operator has formed. Suppose Y is a square, symmetric matrix of dimension (s + r) (s + r). 
Populate the elements in the lower left r × s block of Y, and symmetrically the upper right s 
× r block of Y, with the principal angles between the feature vectors and the anchors. The 

values in the upper left s × s submatrix are set to a small constant, ε, and the values lower 

right r × r submatrix are set to a relatively large constant α. From this symmetric matrix, we 

compute the 1-step diffusion map to get the updated (x, y)-coordinates of the visualization.

The result of setting the pairwise distances of the images, i.e. the upper left block of Y, to a 

small constant is that images want to collapse to a single point in the diffusion map 

embedding. Only their relative distances to the anchors pull them apart. Similarly, the large 

constant value set for the lower right block of Y attempts to push the distinct clusters away 

from each other. As we will show in the following Section (and in Figure 4), this provides 

something like a gradient between the different types of particles in our dataset.

III. Results

In our application domain we assume that the human operator has some knowledge about 

the data, and they are looking to explore other hypothetical relationships or to organize the 

data relative to this known information rather than to all the information available. Thus, we 

are only looking to display points based on their relationship to some user selected clusters 

of data. Figure 2 shows an initial layout of the particle image data using a standard 1-step 

diffusion map. From this initial layout, the user manually creates two small clusters of 

related images by moving them in the INStINCt framework, as is shown by the circled 

images in Figure 3. The purpose of the clustering step is to determine which images the user 

thinks are related. Once that information is gathered, we create an “anchor” to represent 

each cluster. The anchor consists of an average of the feature vector representations of the 
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images in that cluster. The remaining images are arranged according to their distances to 

those anchors. The results of the associated update is shown in Figure 4. If we use three user 

created clusters, we see a layout like the one in Figure 5.

These initial results using clustering indicate there is a strong correlation between shape and 

texture and particle type. However, this data is missing labels and requires an approach that 

combines clustering on feature data with input from the user to perform semi-automated 

classification on particle types.

IV. Conclusions

This paper presents a new method for user analysis of particle image data produced by SEM. 

The work presented in this paper represents an exploration into an adaptive data 

visualization technique through the representation of high dimensional spaces. Our results 

appear to reflect semantic relationships in a way that is hopefully valuable to human 

operators. Users choose to indicate relationships, via the positions chosen on the client 

canvas, which are indicative of shape, size, and texture. We envision this tool as a unique 

processing capability for triaging large quantities of images, either to provide comparisons 

across benchmarked datasets or simply qualifying groups of similar particles.

There are a number of directions for extending this research in future work. First, we would 

like to incorporate multiple feature vectors for each particle image. For the case of the data 

set at hand, each particle has been imaged exactly once and therefore corresponds to a single 

feature vector. However, the method implemented in INStINCt is flexible enough to handle 

the span of multiple feature vectors as a representative for a single particle. This situation 

could arise if the particles were additionally analyzed as high-resolution secondary electron 

images. We also would like to take into account the scale of each particle to incorporate size 

to our analysis. Finally, we would like to extend this proof-of-concept to include a database 

that would enable more flexibility for saving user input, such as image groupings, 

morphological labels, and possible explicit relationships.
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Fig. 1. 
Example particle images from the Capstone Aerosol Study.
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Fig. 2. 
Initial diffusion map layout of the particle image data.
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Fig. 3. 
Particle image data with two user created clusters of images.
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Fig. 4. 
Particle image data with two clusters after the distance-to-anchor diffusion map update.
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Fig. 5. 
An example layout for the particle image data after the user selects three clusters and the 

distance-to-anchor diffusion map update.

Jurrus et al. Page 13

IEEE Int Symp Technol Homel Security HST. Author manuscript; available in PMC 2018 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. Methods
	A. Client Interface
	B. Feature Selection
	C. Dimensionality Reduction

	III. Results
	IV. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5

